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The representation theory of wreath products G -  Sn is applied to study algebras satisfying 
polynomial identities that involve a group G of (anti)automorphisms, in the same way the repre- 
sentation theory of Sn was applied earlier to study ordinary P~I. algebras. Some of the basic 
results of the ordinary case are generalized to the G-case. 

O. Introduction 

Throughout this paper we assume F is a field of characteristic zero, and all 
algebras considered here are F-algebras. 

The representation theory of the symmetric group Sn has proved to be a very 
useful tool in the study of P.I. algebras [2], [4], [12], [13], [15], etc. The basic idea 
here is to identify the space Vn(x), of the multilinear polynomials in xl , . . . ,  xn, with 
the group algebra FSn : Vn(x)-FSn. If Q =I(R)  are the (ordinary) identities of R, 
this makes Qn = Q tq v n a left ideal in FSn, and allows us to define the sequences of 
cocharacters xn(R) and codimensions cn(R) [2], [11], [12], etc. 

Let R be an F-algebra and let G be a group of automorphisms and anti-automor- 
phisms of R. G-polynomials and G-polynomial identities (G-P.I.) are defined in a 
natural way [7], [9]. An important class of such algebras are rings with involution * 
[1], [5], [9]; .-polynomial identies where characterized by Amitsur [1], who showed 
that a ring with involution • is P.I. iff it is .-P.I.  

Let G be a group, G - S n  its wreath product with Sn [6], and let R be a G-P.I. 
algebra. In this paper we show how the representation theory of G - S n  can be 
applied to the study of the G-identities of R. This is done in a way which generalizes 
the ordinary case - in which the representation theory of Sn is applied to P.I. 
algebras. Here we (again!) identify the group algebra F[G-Sn]  with Vn(x I G), the 
multilinear G-polynomials of degree n: if P = G. I(R) are the G-polynomial identi- 
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ties of R, then Pn=PN Vn(xlG ) is a left ideal in F[G-Sn]; the G-cocharacters 
xn(RIG) are defined accordingly. 

The applications of G-Sn representations require a detailed knowledge of the 
idempotents and the one-sided ideals in F[G-Sn ]. A detailed representation theory 
of Z2-Sn was obtained by A. Young [17]. The general method for obtaining the 
irreducible representations of wreath products over C was later obtained by Specht 
[8], [16]. In [14], these representations are obtained from a double centralizing 
theorem. In theAppendix here we derive, from [14], a detailed and explicit informa- 
tion about idempotents, one-sided ideals and 'Branching' in F[7/ l -Sn];  this is 
essential for the applications of 7/2- Sn representations to rings with involution. 
The few basic properties of the (ordinary) identification Vn(x)=FSn are reproved 
here, in Section 2, in the G-case, thus allowing us later to generalize some of the 
'ordinary' results. Such are the characterizations of Capelli identities [13], and 
'hook'  properties for the cocharacters [2]; they are redone here (Section 5) in the 
case of rings with involution - and could be done in a more general situation (to 
shorten and to make the exposition explicit we do not treat the subject in the most 
general possible way!). 

We finally deduce some initial results about the .-characters of the k x k matrices 
Fg (A* being the transpose of A e Fk). These simple results hint that a single Young 
diagram (partition)/9~-n in the ordinary cocharacter xn(Fk) is replaced in xn(Fk I *), 
somehow, by a set of pairs of partitions (2,/J) with = half the height of/9. It is hoped 
that a further study will yield some interesting results about both the ordinary and 
the .-cocharacters of F k. 

1. Wreath products 

Let A be a vector space and write 

T n ( A ) = A ® " ' ® A .  
k Y 

Y 

n times 

The symmetric group Sn acts on Tn(A) by permuting coordinates: 

a ~ Sn, a = al ®"" ® an ~ Tn(A), then tr(a) = a~-,0) ®--. ® aa-lfn). 

In the case A is an algebra, Sn clearly acts on Tn(A) as a group of automor- 
phisms, and we define the wreath-product A - S n  to be the twisted group algebra 
Tn(A)(Sn)'Tn(A)(Sn)~fTn(A)®F[Sn] as vector spaces, and multiplication is 

given by 
(a~tr).(b~r)~fa.tr(b)(~trt ,  a,b~Tn(A),tr, zESn [8]. 

If G is any group, the wreath product G-S,,  (which is a group!) is defined 
similarly [6], and one easily verifies that F[G- Sn] = (F[G]) - Sn. 
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For the representation theory of wreath products, see the introduction. 

2. I d e n t i f y i n g  F [ G -  Sn] = - V,,(x ] G )  

2.1. Let G be a group, X a set of indeterminates, then form the (larger) set of 
indeterminates 

XxG-<XI G>= {xg=g(x) ix~X, gEG}. 

G acts naturally on (X]  G): 

(xgl) g2 = x tg2g~) (i.e. g2(gl(x)) = (g2gl)x) for x e X ,  gl, g2E G. 

We let F ( X  I G) be the (associative) ring of non-commutative F-polynomials in 
the indeterminates (X]  G). The difference between these and the ordinary case 
(no- or trivial-G) is in the degree function: 

2.2. Definition. Let M e F ( X  ] G) be a monomial and let y ~X. Then the degree of 
M in y, degy M, is defined as the number of times the variables yg appear in M 
(disregarding the g's ~ (G). 

2.3. Definition. Let X, G, F ( X  [ G ), degy M as in 2.1, 2.2. Assume now that IX I= oo 
and fix a sequence Xl, x2,... ~ X. 

We define the space of G-mult'ilinear polynomials Vn(Xl, ... ,xn ] G)= Vn(x [ G) as 
follows: 

V (xlG) g' G} = span F {x~tl) • [a  "" X~(n) ~ Sn,  gi E . 

We now identify Vn(x I G) with F [ G -  Sn] in a way that generalizes the identifica- 
tion Vn(x)EFSn (G-trivial) [11]. This is done in 

2.4. Definition. Let G t') = G x --. x G, so F[G tn)] -- T'(F[G]). Let 
k 3 at 

n 

g = (gl , . . . ,gn)=-gl@.. . t~gn~G (n), aeSn,  

so g ® a e G -  Sn. Then identify 

v "~ d.cef .~g;~l) . .z;(ln) 
g ®  a -  M , ®  o (x~, ...  , . ,nj  - "~O) "'" %t,)" 

E x t e n d ,  by  l ineari ty ,  to  i d e n t i f y  

F I G -  SA -- V~(x I C). 

Note .  The identification Vn(x)=-FSn (G trivial) has two basic properties [12, 
§2, (1), (2)] which made it possible to apply the theory of Sn-representations to P.I. 
algebras. Fortunately, these two properties (easily) extend to the identification 

F I G -  SA -- V~(x I a ) :  
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2.5. Lemma.  ( 1 ) L e t g ,  heG(n),a,  reSn .  Then 

( h ® r )  Mz®o(xp . . . , x  n) = ~r [" h~-~',, -' - - * g ® a \ . ~ r ( l ) ,  . - .  ( ) 

(2) Let ~ • Sn C_ G -  Sn, and write M g ® a ( X l , . . .  , Xn) =Y1""Yn. Then 

Me® ~ (xl, . . . ,  x~) vl = Y,(1) "" Y,(,), 

i.e., multiplication by a permutation from the right changes the order (places) in 
every monomial by that permutation. 

Proof. We prove, for example, (1) 

(h ® r ) - M g ® a ( x ) - - - - ( h ® r ) ( g ® a )  = h. r ( g ) ® r a  = k ® O  

where 0 = r a  and k i = h i . gr-l(i), 1 _< i_< n. Now 

l k ® O -  YIG~' ... x ' and ko(~ ) = (ho(j)gr_te(j)) = g-~j) . hra(j)  . - 1  " 0 ( 1 )  ( ) 

Hence " k ~ _  (xh;2u~]g~c~ (see 2.1) which implies XO(j) -- ~ ra(j) ) 
- 1  - 1  - 1  - I  - I  

k ® 0 = . --  = h '  V-~(I)/ V '~( , ) ]  ,--g®~V-~o), ..., ~(,)1 

(2) The proof  of  (2) is similar. [] 

3. G-T-ideals 

3.1. Notations. Let R be an F algebra, and let Aut*(R) denote the group of all 
automorphisms and anti-automorphisms of R. The subgroup Aut(R) of R automor- 
phisms is normal,  of index _<2, in Aut*(R). Let G _c Aut*(R). Given f (x l ,  ... ,Xm)• 
F ( X  [ G)  and rl, ..., rn e R, one evaluates f ( r l , . . . ,  rn) • R; if  f ( r l , . . . ,  r~) -- 0 for all 
rl , . . . ,  r~ • R,  f ( x )  is a G-identity and R is a G-P.I. algebra. 

Denote P =  G.I(R)  = {the G-identities of R} c_ F ( X  [ G).  Then P is a G-T-ideal 

in the sense of  3.3. We first make G act on F ( X ]  G): 

3.2. Definition. Let G be a group, H ~  G a normal subgroup (interpret H as 
automorphisms, G \ H as anti-automorphisms. For example, if G __. Aut*(R), then 

H =  GN Aut(R)). As in 2.1, G acts on (X[  G).  Extend to F ( X [  G) = F ( X  [ H ~ G ) :  
Let M, N be monomials,  g • G, then 

~ M e ' . N  g i f  g e H ,  
(MN)g = ( N z. M e i f  g e O \ H. 

By linearity, G now acts on F ( X [ G )  with H as automorphisms, G - H  as anti- 

automorphisms. 
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3.3. Definition. (a) Let H~G act on F(XI G) as in 3.2. Then ~o:F(X[ G)~ 
F ( X I G )  is a G-homomorphism if for all x e X  and geG,  q~(xg)=(~(x)) 8. 

(b) The two-sided ideal P c_ F (X  I G ) is a G-T-ideal if for all such G-homomor- 
phisms tp, tp(P) c_ P. 

3.4. Corollary. The G-identities P o f  a G-P.I algebra R (3.1) is a G-T-ideal in 
F<X]G>. 

4. G-Codimensions and G-eocharacters 

4.1. Corollary. Let Pc_ F(X I G) be a G-T-ideal. It easily follows from 2.4(1) that 
In= Ptq V,(x [ G) is a left-ideal in F[G-  S,] =- V,(x l G), so V,(x I G)/P, is a left 
F[G-  Sn] module. 

4.2. Definitions. Let R be an F algebra, G c_ Aut*(R) a subgroup, H = G N Aut(R) 
and let P c_ F (X  ] G) be the G-identities of R. Following the case when G is trivial 
[11], we now define xn(R J G) to be the G-Sn character of the module Vn(x I G)/Pn; 
we call {Xn(RIG) } 'the G-cocharacters of R ' .  The 'G-codimensions' of R are 
cn(R I G) %f dim(Fn(x [ G)/Pn) and are the degrees of the G-cocharacters. 

4.3. Remark. Given R, G c Aut*(R) as in 4.2, we can also ignore G: we have the 
ordinary polynomials F<X), the polynomial identities Q=I(R)c_F<X) and the 
space Vn(x) of multilinear polynomials in xl, ... ,xn. Thus Qn- Q N vn is a left ideal 
in FSn, Xn(R) is the character of ~/Qn,  and cn(R)--dim(FJQn) the ordinary co- 
dimensions [11]. We have the following trivial lemma. 

4.4. Lemma. With notations as in 4.2 and 4.3, cn(R)<_cn(R [ G). 

Proof.  By definition, cn(R) is the maximal number of monomials in ~ which are 
linearly independent modulo Q =I(R) .  Since 

Q = I ( R ) = F ( x ) N P  (P=G.I(R)<_F(XIG)),  

such monomials are also linearly independent modulo P. [] 

4.5. Example. Let R be a ring with an involution [5, p.17] and denote the identity 
map by 1 : R ~ R .  We have G =  {1, ,} c_ Aut*(R) and G~7/2. Thus, the representa- 
tion theory of 7/2 --S n is applied to study the .-polynomial identities of rings with 
involution. A major example for such rings (algebras) are k x k matrices over the 
field F, were • = T is the transpose. 

4.6. Remark. Clearly, if R is P.I. then, for any G c_Aut*(R), R is also G-P.I. 
The converse, in general, is not true: a counterexample was given by Kharchenco 
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[9, p.103]. However, by Amitsur's theorem [1], that converse is true for rings with 
involutions: ,-P.I.  implies P.I.! The following theorem translates the question of 
whether G-P.I. implies P.I. into the language of codimensions. 

It is known that an algebra R is P.I. iff c,(R) is exponentially bounded [10], 
[12, Theorem 1.1]. 

4.7. Lemma. Let R be G-P.L and (ordinary) P.L satisfying an ordinary identity o f  
degree d. Then 

c,(RIG)  IGI'(d- 1) 

Proof.  Let f2 n c_ Sn be a basis (of monomials) for V,(x)-FSn modulo the ordinary 
identities I(R)= Q: For all ire S. 

xa(1) "'" xa(,) = Ma(Xl, . . . ,x ,)  = ~ a(tr, r). M~(xl, ...,xn). 
r e f2 .  

Let l ® t r =  1 ® - - . ®  1 ®tr  (1 = lo). Then Ml®a(x)=Ma(x) (2.4). Thus, for any 

g ® t r e G - S n ,  

Mg®a(x) - -  g®tr  = (g® 1)(1 ®tr) - (g® 1)Ml®a(x) 

, o o o ,  ~ . . .  • 

Hence 

Ms,®,~(x)= ~ a(a,r)M~(x~?',...,xg, ~') (modI(R)) 
r ~ I'2. 

= ~, t~(tr, r)M~®~(xl,...,xn) (modI(R)). 
TE..Q n 

Since I(R) c_ G.I(R),  this shows 

e,(RIG)<-IGI'e,(R), 
and the proof follows from [12, 1.1]. [] 

As a corollary we have 

4.8. Theorem. Let  G c_ Aut*(R) be a finite subgroup, and let R be a G-P.L algebra. 
Then R satisfies an ordinary identity i f f  cn(R [ G) is exponentially bounded (i.e. 
there exists 0 < a  such that for  all n, cn(R [ G)<-an). 

We have thus 'translated' Amitsur's theorem to the language of codimensions: 

4.9. Amitsur's theorem [1]. A ring R with involution • that is , -P .L  is also (ordi- 

nary) P.L 
Equivalently, such R is , -P.L i f f  cn(R l *) is exponentially bounded. 
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Thus, a direct, 'combinatorial'  proof of the fact - yet to be founded - would 
yield another, combinatorial, proof of that theorem. 

Similar remarks apply to the other known cases where G-P.I. implies P.I. 
[9,6.15]. 

5. Involutions and F[7 /2 -  Sn] - Vn(X I *) 

We now realize some of the idempotents of F[7/2- Sn] as .-polynomials for rings 
with involution. We assume the reader is familiar with the appendix. 

5.1. Notations. As in the appendix, n = m l + m 2 ,  2~-m~, /~F-m 2, 2'-,e~, l~*-,e u, 
f (m l ,  m2)= Tml( f l )® Tm2(f2) and e~,u=f(ml, m2)®(e ~ ®eu). 

Following [12, §2] we now realize e~,u=e~,u(X 1, ... ,xn), as a *-polynomial. As in 
[12, §2], we begin with the tableau To(;O'~-,eo,~ (and To(lZ)'~eo, u). Thus e0,~ ®e0,u = - 
eo,~(Xl, . . . ,Xm)" eo, u(Xm,+l, ...,Xn) is given in [12, §2], and we calculate eo,~,u(X). 

5.2. Note. G = { 1 , . } = Z  2 (4.5), s o i l =  1 + . , f 2 = 1 - .  (A.1, with . = g ) :  x f ~ = x + x  *, 
x f 2 = x - - x  * .  

Now, e;t,u = [f(ml, m2)® 1]- [1 ®(e~®eu) ] (same for e0,~t,u). Let 

gl = gl ® " "  ® gm~ G T m~ (F[~'2]), g2 = gm~ + 1 ®""  ® gn G Tm2(F[7/2]) 

and let M1, M 2 be two monomials such that 

M 1  ( X l ,  . . . ,  X m l )  " M2(xm~ + 1 , " ' ,  Xn) G F[Sm, X Sin2] C_ F[Sn] C_ F[7/2 - Sn]. 

It easily follows by 2.4(1) that 

[(gl ® g2)® 11 [Ml(x~, ...,Xm,)" Mz(xm+ 1, ...,xn)] 

<'  x2' • ~" [ gml+l  n 
I ! . _114 2 . . . .  

= ' " ' ' '  I / I + 1 ,  ' 

Replacing monomials by polynomials we now have 

5.3. Corollary. With the above notations, 

eo,~, u = [f(ml ,  m2)® 1]. [e0,a(xl, ...,Xm,)" eo, u(Xm, + l, . . . ,Xn)]  

* . . . , x , - x * ] .  = eo, x[xl +x~, ...,Xm, + x * ] "  eo, u[Xm,+l-Xm,+ 1, 

5.4. Remark. The set {~,-le;~uYlT(2,1a),~,eF } is a complete set of primitive 
idempotents in Ix, u (A.15). By (A.16), for any such y-le;~uy, there exists t leSn 
such that ?-lea, u?=tl-leo, a, url. Thus y-lea, uy can nowbe  realized in Vn(x ] .) by 
5.3 and 2.5(1), (2). 



140 A. Giambruno, A. Regev 

5.5. We now follow [12, §2] and identify some of the variables xi's in ex, u(x ). Note 
that Tn(F[772]) acts on any monomial of degree n - hence on homogeneous such 
polynomials - not necessarily multilinear. 

If ¢p is the identification and ~p : x---, z, then ¢p : x * ~  z* (3.3(a)). Thus ~p commutes 
with Tn(F[7/2]) C_ F[771 - Sn]: 

q~[(f(ml, m2)® 1)(eo, a(x)-eo, u(x))] = ( f (ml ,  m2)® 1)(P(eo, a(x)- eo, u(x)). 

As in [12, §2], rename the variables according to the tableaux (To(A), To(p)), then 
identify: those in the ith row of To(A) are identified with Yi, those in the ith row 
of To(P ) with zi. We thus obtain 

5.6. Lemma. Let  A' (p ' )  be the conjugate partition o f  ;t (p). Under the above ,-sub- 
stitution ~p, 

~p(eo, x,u(x)) = d ( ~  sxj[Yl + Y~, .. 

f or  some integer d ~ O. 

5.7. Remark. Since the .-codimensions of a ,-P.I.  ring are exponentially bounded, 
the rest of the results of [12] can immediately be generalized to such rings with 
involution. In particular, one can obtain explicit .-identities 

+ x*l)(s 2tx-x*]) 

for such rings. 
In fact, the whole body of results in this direction ([2], [12], [13], etc.) can now 

be generalized. Another possible generalization in that direction might be to G-P.I. 
rings. 

We list below some of the theorems, with few hints as to their proofs. 

Let dt+ 1 Ix1, " " ,  xt+ 1; Yl, " " ,  Yt] denote the Capelli polynomial: 

dt+l[Xl, "",Xt+l; Yl, " " ,  Yt] = E sgn(tr)xa(1)YlXa(2)Y2""YtX~(t+l). 
aESt+l 

5.8. Theorem [13, Theorem 2]. Let  R be an algebra with involution • and let 

xn(R[*)  = E ma, uZx, u 
Ial÷lul=n 

be its cocharacters: here Xa, u is the 77 2 - -  S n irreducible character that corresponds to 
(A, p) and ma, u =ma, u(R 1") are the multiplicities. 

(a) R satisfies the .-Capelli identity 

/ff 
dt+ 1 [x  I q-x~,  . . .  , x t +  1 q- xt*+ 1; Y l , - . . ,  Yt] = dt+l[X-bX*; Y] 

xn(RI*)  = E ma, uX;t,u 
I~l+l~l=n 

h(A)st 

(h(A) = A~ is the height o f  A). 
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(b) Similarly, R satisfies du + 1 I x -  x*; y] i f f  

zn(RI*) = E mx, uXa, u. 
I;,l+lul=, 

n(l~)<_.u 

(c) R satisfies both (a) and (b) i f f  its *-cocharacters are "contained" in a double 
strip! 

Hints for the proof. Follow the proof of the original ( 'ordinary') theorem [13, 
Theorem 2]. The three main ingredients in that proof are: the properties of l/n(x ) 
as a left and as a right FSn module, and the 'Branching' rules in FSn. These first 
two properties are generalized in 2.5(1), (2), while the corresponding branching 
theorem for F[7' 2 -  Sn] is given here in A. 19. 

The rest of the proof now follows. [] 

These same remarks imply 

5.9. Theorem [2]. Let R be as in 5.8. Then there exist kl,ll, k2,12EN such that 
gn(R [ .) "is contained" in the double hooks (H(kl, ll),H(k2,12)): 

;tn( R, *) = ~ mx, uXa, u 
(~, u) e H2(n) 

where H2(n) = {(~,,u)[ 121 + lul =n ,  e H ( k l ,  ll), pert(k2,12)} .  

(H(k , l )  is defined as the set of partitions ,~-'(,~1,,~2,...) that satisfy ;tk÷j<_l, 
j = 1, 2, ...). Similarly, the other results of [2] can be generalized! 

5.10. Remarks. Hooks of Young diagrams were studied in [3]; applications to 
(ordinary) P.I. algebras were given in [4]. A generalization of the results of [3] to 
'multihooks' was given in [14, §7]. The generalization of the results of [4] to rings 
with involution - and to G-P.I. rings - is yet to be done! 

5.11. Conjecture. Let R,X.n(R[*) as in 5.8. Then f ( n ) =  Etal+lul=, mx, u ( R ] .  ) is 
polynomially bounded (as a function of n). 

6. The matrix algebra Fk 

Let F ,  denote the k x k matrices, and let A* be the transpose of A e Fk: * : A -"A* 
is an involution! We now look closer at the .-identities of F k. 

6.1. Lemma. Let  t=~;k(k+ l), u = - ~ k ( k - 1 )  (so t + u = k 2 ) ,  then both t and u are 
minimal indices f o r  which Fk satisfies the .-Capelli identities 

dt + l [x + x*; Y] and du_ l [ x -  x*; yl.  
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P r o o f .  By a trivial dimension argument, F k satisfies both these identities: 
matrices A + A*~ F~ are symmetric, and their dimension is t. Similarly for u. 

We prove the minimality of, say, t: order 

{(i , j )  l i<_j} = {( i l , j l ) , . . . , ( i t , j t )} ,  

then define: 

the 

X v = eivj~ 1< v <_ t, 

Y v  = ej~i~+ , , l <_ v < t - 1 ,  

Yo = eli, and .~t = ej11.  

Now evaluate 

.~o dt [gl + £~,---,xt + x*; .Yl,--- ,Y,- 1] Y, 

by calculating that alternating sum over a e St; trivially, if a#: 1, its corresponding 
summand is zero! Hence 

Y0" dt[x+x*; Y] "Yt 
2 k . = el i l (e i l j ,  + ej, i l )e j l i2 . . .  (ei,j ,  + ej, i ,)ej,  1 = el l  =/: O. 

Similarly for u. [] 

An immediate corollary of 5.8 and 6.1 is 

6.2. Theorem. Let Xn(Fk [*) be the .-cocharacter o f  F k, t=½k(k+ l) and u= 
½ k ( k -  1). Then 

xn(Fk I *) = ~ m~,u" X~,# (;t' l =h(A) is the height o f  ;t, etc.) 
I,~)+lui=. 

Moreover, there exists n = n ( k ) and partitions )t, g, + l u l  = n,  satisfying A ~ = t 
and lz~ = u, f o r  which the corresponding multiplicity m~, u =ma, u(Fk l .)  is nonzero. 

6.3. Remarks [12, Theorem 3]. For the ordinary identities of Fk 

x , ( F )  = E mo" xo. 
OI...-n 

e~<_k 2 

Note that both t, u ~ ½k 2 (and t+  u = k 2) in 6.2. Thus, in a vague (!) sense, a 
single partition O~n in xn(Fk) is replaced, in xn(Fk[*), by pairs of partitions 
(2, g), [2[ + [g[ = n, with --- half of the (possible) height of 0. 

We also remark that at the moment, very little is known about the multiplicities 
m~ =m~(Fk) (in x,(Fk)) if k>_3. A detailed study of the multiplicities m~,u(Fk[*) 
might shed some light on these m~'s. 

We finally remark that if Conjecture 5.11 is true, it would imply - by asymptotic 
computations - that the two kinds of codimensions, cn(F~ [ *) and cn(Fk), are very 
close to each other. 
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Appendix:  F[77 2 -  Sn] 

The representation theory of 7/2-S n has been worked out by A. Young [17]. We 
shall now deduce that same theory, very easily, from the results of  [14]. We give 
here a complete set of  primitive idempotents for I~, u that decompose it into a direct 
sum of minimal left ideals J~,u, in F[772-Sn]. We also obtain a very explicit 
description of these one sided ideals J~, u c_ I~, u" We finally derive the branching rule 
for F[77 2 -  Sn]. 

All this can easily be generalized to the more general wreath products A -  Sn. 

A.1. Notations. Let Z2= {1,g}, g2= 12= 1, A =F[7/2]. Let fl=½(1 +g),  f2=½(1-g)  in 
A,  Ai=Ffi=-F, i = 1,2, so A = A  1 ®A2.  We shall constantly refer to [14]. For a given 
(fixed) n we choose W with dim W>_n, so A i = X  i and Z i = X i ® W - f i ® W ~ f W i ,  
i = 1, 2 [14, 5.2]. Let m be an integer, v ~ m, T v a tableau of shape v with correspon- 
ding idempotent ev ~ FSm. We denote this by v ~ ev (we shall later make the choice 
of Tv more specific). 

Let n = m l + m  2 and identify F[Sm, XSm2]=-FSm~(~FSm2 . Let ~.l---ml, l i t -m2,  
,-, e~ e FSmt , II ~ e u e FSm2 SO that (,t., ~ ) '~ ea ® e u e FSm, ~ FSm2. We also write 

FSra,ex =J~, FSm2eu = Ju' the corresponding minimal left ideals. 

A.2. Definition. With f i , f 2  as in A. 1, define 

f (m i ,  m2) = Tm'( f l )@ Tm2(f2) ff Tn(A), 

and denote 

Lx, u = f (m i ,  m2)®(Jx ®Ju)  C_ A -  Sn. 

A.3. Notation. Let A (F) be a left (right) transversal of Sin, x Sin2 in Sn: 

Sn= U T(SmlXSm2)r~A (Sn =y~F(SmlXSm2)~)' 

so that the coset-representative of Sm, 
denote 

ex, u = f(ml, m2)(~(eA (~eo), 

x Sin2 is r =  1. Also, write s =  F.~,~ r and 

e,l ,# = s -  e , l ,# .  

A.4. Recall from [14]: V = A ®  W= W 1 ~ WE, and ~0 : A - S n ~ E n d ( T n ( V ) )  is 1-1 
(dim W_> n); by a slight abuse of notation we shall denote by tp also all the restric- 

tions of ~p. Recall also that 

M<x,u> = tp(e;t (~eu)(Tm~(wl)@ Tm2(w2)), 

UA, W = GL(W1) x GL(W2) (in this case), 

N<~, u> = H°muA. H, (M<~, u >, T n (V)), 
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and q)-z da (N<zu>) = Jl, u is a minimal left ideal in A - S ~ .  The minimal two-sided 
ideal Ii, u C A -  S n is defined by Jl, u C_ ll, u (also, Ii, u=Jt ,  u. ( A -  S~)). 

A.5. Note. It is well known that HOmGL(W)(~o(ea)Tm~(W),Tm,(w))=~o(FSmea) 
(and similarly for mE and eu). Now, W l =Ff l  ® W and we have 

HI de=f HOmGL(W~) ((0(el) Tm ' (WI), Tm ' (W1)) 

=- 1 r,,(FfO ® HOmGL(W)(~0(el) T m~ (W), T m~ (W)) 

(trivial). Since ~p(Tm'(fl))=lr~,(FfO, we conclude that H l = t p ( T m ~ ( f l ) ® F S m e l )  
(and similarly for m2 and eu). 

We now prove: 

A.6. Theorem. With the notations o f  A.2, A.3 and A.4, 
(a) Jl, u = (A - Sn)el, u = (A - Sn)el, u, so both el, u, el, u are primit ive idempotents. 

(b) Jl, u = @ t e A  r" Ll,  u. 

Proof. Let p=Tm'(wI)®Tm2(w2) .  It easily follows from (the proofs of) [14, 
5.6, 5.7 and 5.8] and from A.5 that 

<P(Jl, u) = N<l,u> = (~ tP(r)HomuA w(~P(ea ® e u ) P , P )  
r~A 

= tP(S)(HOmGL(W,)(qJ(eD TmI(wI), Tm'(wI))) 

® HOmGL(Wl)(q~(eu) Tm2(w2, Tm2(w2))) 

= ~o(s)(~o(f(ml, m2) ® (FSm t et ® FSm 2eu))) 

= ¢P[s(f(ml, m 2 ) ® ( J t  ® Ju))]" 

Here s =  Y.~ A r and f (m l ,  m2)=Tm'(fl)®Tm2(f2).  Since dim W>_n,~o is 1-I, so 
we conclude that JI, U = ~ A  r Ll, u = s [ f ( m l ,  m 2 ) Q ( J l ® J u ) ] ,  which proves (b), 
and also implies that el, u, e:~u e Jl, u. To prove (a) we show that e~, u = el, u and 
~,u = el, u- But this is a trivial consequence of the following 

A.7. Lemma. Let  n = m l + m  2, 2~-ml ,  li)--m 2, A(-)e l, e'aeFSm,, l l o e  u, etgffFSm2 
as in A .  1, and let 0 e Sn. Then 

[f(ml, m2) ® (el ® eu)] OIf(ml m2) ® (el @ e'.)l 
= I 0 ifO¢Sml×Sm2" 

f ( m l ,  m2)®(e101eu®e'~02e' u) i f  0 =(01, 02)eSm, ×Sml. 

Proof. Note that 

Q = [ f (m l ,  m2) ® (el ® eu)] 0 = f ( m l ,  ml)  ® [(el ® e u) O] 
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So, if O q. Sm, X Sm2, then 

Q = ~ a o . f ( m l , m 2 ) ® a  (a ,~ • f ) .  
~S,., xSm2 

Now, a[f(rn~,rn2)®(e'~ ®e'u)l=a(f(rnl ,m2))®a(e '~ ®e '  u) and since a*Sm XSm~, 
f (m~,  m2)- a( f (m~,  m2)) = 0 (f~ "f2 =0), which clearly implies the first part. The 
proof of the second part is similar and is based on the (obvious) fact that if 
0 • Sin, x Sm~, then O(f(ml,  m2)) =f(ml,  m2) =f2(ml, m2). 

This completes the proof of the Lemma, which clearly implies that e~, u = e~, u and 
~2u=~,t,u; thus completing A.6. [] 

To complete our investigation of 14, u we now give a complete system of primitive 
idempotents that decompose Ia, u as a direct sum of minimal left ideals. These 
idempotents, in general, are not orthogonal. 

First, from A.7 we deduce 

A.8. Corollary. Let  2 ~ ea, e'~, gt ~ e;, e' u and e~,u, e'~, u as in A.3. I f  (ea ® eu)(e'~ ® e'u) = 
O, then ea, u. e'~.u =0 (and ~a,u-~,u=0). (Obvious.) 

A.9 .  Nota t ion .  Let n = m~ + m2, A t-- m~, gt ~- m 2 and  denote 

T(2,1u)=l(T~,Tu)  T~ is standard ° f  shape ~ 1" 
T u is standard of shape 

Each (T~, Tu)•  T(2,/~) defines an e;~,u, as in A.3, hence the corresponding minimal 
left ideal ( A -  Sn)ea, u=Ja, u. We denote 

k(A,U) = ~] ( A - S , ) e ~ ,  u. 
T(Z, u) 

A.10. Note. Order {T~} lexicographically, let T~ < T~ and let T~ ~ ea, T~ ~ e~. 
Then it is well known that ea. e~ = 0: the set {ea I e~ ,--, Ta} is 'one-sided orthogonal'. 
Same for {eu le  u ~ Tu}, and by a corresponding lexicographic order of T(it,/z), 
{ex, u [ea, u ~ (Ta, Tu) • T(2,/2)} is also one-sided orthogonal. By A.7, if ex, u, e'~, u are 

as in 
Thus, 
sided 

A.7 and  Yl ~ Y2 E/ ' ,  t hen  -1 -1 t (y! eLuy l ) (y  2 e,LuY2)=0, since ),1),21 ~Sm, XSm2. 
by an appropriate order, {y-lezuY ] e~,u "~" (Ta, T u) • T(A,/a), y • F }  is 'one- 

orthogonal'. By a standard argument, this yields 

A.11 .  Remark .  Let K(;t,/a) be as in A.9 .  Then  

K(A, lU) = @ (A - Sn)e;t,u = @ J;t,u. 
T(2, .u) T(2, la) 

n 2 2 Thus dimKO, u) = (ml)d; -d~. 

A.12. Note. It is well known that if {Tx} are all the standard tableaux of shape ~, 
then ~,lr~)FSmme;t=~{rA J;~=I;t' the minimal two-sided ideal I;tC_FSm~. Same for 
~. This implies 
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A.13. Lemma. K()t,12)=(+~ A r[ f (ml ,  m2)®(Ia ® Iu)]. 

Proof. By A.6(b), J~,u D-f(ml, m2)®(J~®Ju) ,  hence 

K(2,12) = @ Jx, u 
T(2,/~) 

D- f (ml '  m2) @ ( T(~2,I~) (Ja ® Ju)) = f(ml' m2) (~ (lA (~ Iu)" 

Since K(2,12) is a left ideal, K(2,12)_~ E~A r[ f (ml ,  m2)®(Ia®lu)].  The r.h.s is 
clearly a direct sum and therefore its dimension is (also) (n)d~du2; hence, by 
A.11, it is equal to the l.h.s. [] 

A.14. Lemma. With the above notations we have 

[f(ml, m2)®(I  ®Iu)]" [Tn(A)~(FSml (~FSm)] = f(ml, m2)®(I  ®Iu). 

Proof. Clearly, 1.h.s. _ r.h.s. Since Tn(A) is F-spanned by the elements 

f ( i )  = f/~ ®. - -Qf / , ,  ij ~ {1,2}, 

the proof now easily follows from the following observation: 

If a ~ Sin, × Sin2, then 

I0 if f(m , m2) .f(i), 
( f ( m l ' m 2 ) ® a ) ' f ( i ) =  f (ml ,  m 2 ) ® a  if f ( i )= f (ml ,m2) .  [] 

A.15. Theorem. With the notations o f  A.3, Ix, g = ~)r,r(~,u) ( A -  Sn)(y- lezuy) ,  
i.e. {y-lex, uy } is a complete set o f  primitive idempotents for  I~, u (each 
(A ~ Sn) (Y- 1 ex, u Y) = (A ~ S, ) ex. u y is a m in im al left ideal in A - Sn). 

Proof. Since I~, u is the minimal two-sided ideal _ J~,u, hence I~,u=K(A, 12). (A-Sn) .  
Clearly A - S n = ( ~ y ~ r  [Tn(A)®(FSmt®FSm2)] )', hence, by A.14, h ,u= vZ, y~r K(A,12)y. 

- - t  n ~2 r /2d2  [ E l  ( n l )  and dimK(A,p) n 2 2 Now, dimla, u-~md ,,~,,~, = =(m,)d~d~ (A.11), therefore 
ILu=@y~rK(A,  12)y. The theorem now follows from A.11. [] 

-1 i A.16. Remark. Let el=),{le~,uyl, e2=Y 2 e~,u~ 2 be two idempotents as in A.15. 
Then there exists r/eS,, such that eE=r/-~elr/. 

Proof. This is well known in FSn: there exist 0i E Sin,, i = 1, 2, such that 

e'~ = 0~1e~01 and e' u = 0~1eu02 . 

Since 0 = 01 02 commutes with f ( m  l, m2), hence e~, u = 0-1 ex, u 0, so e2 = r/- 1 el r/where 
r/= Y1-10y2. [] 

A.17. Right ideals. We now decompose I~, u into minimal right ideals. 
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Define ~ p : A - S n ~ A - S  n by a=a l®. . .®an ,  treSn, ~ p ( a ® t r ) = t r - ~ ( a ) ® t r  -1, 
and extend linearly to A - S~. Check that  tp((a ® a ) .  (b ® r))  = tp(b ® r ) .  ~o(a ® tr). 
Thus tp is an ant i - isomorphism of  A -  Sn with itself. 

Clearly, ~p(ea®eu)=e~®e u and ~p(f(ml, m2))=f(ml,m2), hence q~(ex, u)=ex,  u- 
Thus ~p(Jx, u)=~p((A-Sn)ex, u)=eg, u (A-S~)  is the corresponding minimal  right 
ideal. The decomposi t ion  of  Ix, u into such ideals is now clear. 

Branching in 7/2- S n 

The embedding of  A - S n into A - Sn ÷ z can be done in m a n y  ways, and we choose 
a natural  one: Sn embeds natural ly into Sn+l (Sn = {a e Sn+l I tr(n + 1) = n + 1}). 
Identify now a l ® . . . ® a n ® t r ~ A - S ~  with a l ® . . . ® a ~ ® t r - - a l ® . . . ® a n ® l ® t r e  
A - S , + I ,  to have A - S , c _ A - S , + I .  

Given Jx, u c_ A -  S~ as before, we shall give its branching in A -  Sn ÷1 by calcu- 

lating (A - S~ ÷ l) Jx, u as a sum of  irreducibles in A - S~ + 1. 

A.18. Note.  Let R 9_ S be finite-dimensional F-algebras with 1 = 1R = ls  such that  R 
is a free right S module ,  and let J C S  be a left ideal. Then R J = R ® s J  (via 
r ® j  ~ r- j ) .  In part icular ,  

( A  - 1)" --  (A - 1)®A-s  

A.19. Nota t ion .  Let 2 I - m  1 and identify a part i t ion with its Young d iagram.  Then 
denote 2 + = all the d iagrams obtained f rom 2 by adding one cell. Similarly for  lz ÷, 

where/z ~- m2. 

A.20. Branching in F S  m --~FSm+I is well known: I f  J~ is a minimal left ideal in 

FSm, then FSm+ 1 • J2---(~a'ea* J2" We can now prove 

A.21. The Branching theorem. With the above notations, 

Proof. Since 

Tm'( f l )® Tm2(f2)® 1 ®(ea ®e  u) =- Tm'( f l )® Tm=(fz)®(ea ®eu)e  J~,u 

we have Tm' ( f l )®Tm2( f2 )®f i®(ea®eu)e (A-S ,+ l )Ja ,  u for both i =  1,2. 

Case 1: i = 2 ,  so f (ml ,  m2+l )®(ea®eu)e (A-Sn+l )J~ ,  u. Since f (ml ,  m2+l)  
commutes with Sin, × Sm2 + 1, 

(A - Sn+ l)Ja, u ~-f(ml, m2 + l) ®(Ja ® FSm2+ leu) 

= • [f(ml, m2+l)®(J~®Ju)l .  
I / E I . t  ÷ 
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It follows from A.6 that 

(A-Sn+l)'J;~,u~_ E J;~,u" 
l t '  E i . t  + 

Moreover, ~,,,~u. Ja, u=@~,,~,+J~,u since these irreducibles are pairwise 
isomorphic. 

non- 

Case 2: I = 1. Similarly, let f (ml  + 1, m2)  = T m, ( f l )  (~) Tm2( f2 )  t ~ f l ,  and let 

(Sm, +l ×Sin2) ~= Sin, +1(1, 2, . . . ,ml,  n + 1)× Sm2(ml + 1, ...,n). 

Then (Sin, +1 x Sin2)~ and f (m I + 1, m2) commute. By exactly the same arguments as 
above. (A-Sn+l)Jx, u Z_@~,~a+ Jx'u where jx,,u=Ja;u. Since all these irreducibles 
are pairwise non-isomorphic, 

Calculate dimensions: 

\ 

® 
ltt ' E l t  + 

[ n + l  '~d d 
d i m J ~ ; U = k m l + l ,  ] ~ u' 

so the dimension of  the r.h.s is 

n + l )  
dim J~,u, = m 2 + 1 d~ du,, 

E A,du + E d;~d u, 
2 ' ~ 2  ÷ m I + 1 u'~u" \m2 + 1 

( ) ( ) =(ml+l ) !mz !  du" ~, dz, + d,t" ~, d u, 
~'~a + m l !  ( m 2 + l ) !  u,~u + 
k v' ") L v J 

= (ml + 1)dz = (m2+ 1)d u 

= 2 ( n + l ) (  n )d~du= 2(n+l)d~,u 
m l  

which obviously is the dimension of  the 1.h.s. Thus 1.h.s = r.h.s, so 

[] 
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